Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms

Abstract : Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-intersecting strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem -gap-MSR, where is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. We show that, if we restrict ourselves to comparative maps without duplicates, the problem is polynomial for = 0, NP-complete for = 1, and APX-hard for 2. For comparative maps with duplicates, the problem is APX-hard for all 0.
Type de document :
Article dans une revue
Journal of Discrete Algorithms, Elsevier, 2013, 19, pp.1-22
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00826876
Contributeur : Guillaume Fertin <>
Soumis le : mardi 28 mai 2013 - 14:43:07
Dernière modification le : jeudi 5 avril 2018 - 10:36:49
Document(s) archivé(s) le : jeudi 29 août 2013 - 06:45:08

Fichier

JDA-ISAAC09.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00826876, version 1

Collections

Citation

Laurent Bulteau, Guillaume Fertin, Irena Rusu. Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms. Journal of Discrete Algorithms, Elsevier, 2013, 19, pp.1-22. 〈hal-00826876〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

114