Synthesizing and Mixing Stationary Gaussian Texture Models

Abstract : This paper addresses the problem of modeling textures with Gaussian processes, focusing on color stationary textures that can be either static or dynamic. We detail two classes of Gaussian processes parameterized by a small number of compactly supported linear filters, the so-called textons. The first class extends the spot noise (SN) texture model to the dynamical setting. We estimate the space-time texton to fit a translation-invariant covariance from an input exemplar. The second class is a specialization of the auto-regressive (AR) dynamic texture method to the setting of space and time stationary textures. This allows one to parameterize the covariance with only a few spatial textons. The simplicity of these models allows us to tackle a more complex problem, texture mixing which, in our case, amounts to interpolate between Gaussian models. We use optimal transport to derive geodesic paths and barycenters between the models learned from an input data set. This allows the user to navigate inside the set of texture models and perform texture synthesis from each new interpolated model. Numerical results on a library of exemplars show the ability of our method to generate arbitrary interpolations among unstructured natural textures. Moreover, experiments on a database of stationary textures show that the methods, despite their simplicity, provide state of the art results on stationary dynamical texture synthesis and mixing.
Type de document :
Article dans une revue
SIAM Journal on Imagine Sciences, 2013, 7 (1), pp.476-508. <10.1137/130918010>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00816342
Contributeur : Gabriel Peyré <>
Soumis le : jeudi 12 décembre 2013 - 09:58:20
Dernière modification le : mercredi 28 septembre 2016 - 16:14:49

Fichier

siims-gaussian-textures.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gui-Song Xia, Sira Ferradans, Gabriel Peyré, Jean-François Aujol. Synthesizing and Mixing Stationary Gaussian Texture Models. SIAM Journal on Imagine Sciences, 2013, 7 (1), pp.476-508. <10.1137/130918010>. <hal-00816342v2>

Partager

Métriques

Consultations de
la notice

1040

Téléchargements du document

681