Significance tests and statistical inequalities for segmentation by region growing on graph

Abstract : Bottom-up segmentation methods merge similar neighboring regions according to a decision rule and a merging order. In this paper, we propose a contribution for each of these two points. Firstly, under statistical hypothesis of similarity, we provide an improved decision rule for region merging based on significance tests and the recent statistical inequality of McDiarmid. Secondly, we propose a dynamic merging order based on our merging predicate. This last heuristic is justified by considering an energy minimisation framework. Experimental results on both natural and medical images show the validity of our method.
Type de document :
Communication dans un congrès
International Conference on Computer Analysis of Images and Patterns (CAIP'09), 2009, Münster, Germany. pp.939-946, 2009, 〈10.1007/978-3-642-03767-2_114〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00812714
Contributeur : Image Greyc <>
Soumis le : vendredi 12 avril 2013 - 16:19:00
Dernière modification le : mardi 5 juin 2018 - 10:14:42
Document(s) archivé(s) le : samedi 13 juillet 2013 - 04:09:28

Fichier

Nee-CAIP2009.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Guillaume Née, Stéphanie Jehan-Besson, Luc Brun, Marinette Revenu. Significance tests and statistical inequalities for segmentation by region growing on graph. International Conference on Computer Analysis of Images and Patterns (CAIP'09), 2009, Münster, Germany. pp.939-946, 2009, 〈10.1007/978-3-642-03767-2_114〉. 〈hal-00812714〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

87