Generalized Sobol sensitivity indices for dependent variables: numerical methods

Abstract : The hierarchically orthogonal functional decomposition of any measurable function f of a random vector X=(X_1,...,X_p) consists in decomposing f(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X_1,..., X_p are assumed to be dependent, this decomposition is unique if components are hierarchically orthogonal. That is, two of the components are orthogonal whenever all the variables involved in one of the summands are a subset of the variables involved in the other. Setting Y=f(X), this decomposition leads to the definition of generalized sensitivity indices able to quantify the uncertainty of Y with respect to the dependent inputs X. In this paper, a numerical method is developed to identify the component functions of the decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties of the components estimation is studied, as well as the numerical estimation of the generalized sensitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world problem.
Type de document :
Article dans une revue
Journal of Statistical Computation and Simulation, Taylor & Francis, 2015, 85 (7), pp.1306-1333. 〈10.1080/00949655.2014.960415〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00801628
Contributeur : Gaelle Chastaing <>
Soumis le : jeudi 11 décembre 2014 - 09:34:35
Dernière modification le : mercredi 12 décembre 2018 - 15:27:32
Document(s) archivé(s) le : jeudi 12 mars 2015 - 10:15:33

Fichier

Article_Application1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gaelle Chastaing, Clémentine Prieur, Fabrice Gamboa. Generalized Sobol sensitivity indices for dependent variables: numerical methods. Journal of Statistical Computation and Simulation, Taylor & Francis, 2015, 85 (7), pp.1306-1333. 〈10.1080/00949655.2014.960415〉. 〈hal-00801628v3〉

Partager

Métriques

Consultations de la notice

769

Téléchargements de fichiers

338