On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations

Abstract : Inspired by the penalization of the domain approach of Lions \& Sznitman, we give a sense to Neumann and oblique derivatives boundary value problems for nonlocal, possibly degenerate elliptic equations. Two different cases are considered: (i) homogeneous Neumann boundary conditions in convex, possibly non-smooth and unbounded domains, and (ii) general oblique derivatives boundary conditions in smooth, bounded, and possibly non-convex domains. In each case we give apropriate definitions of viscosity solutions and prove uniqueness of solutions of the corresponding boundary value problems. We prove that these boundary value problems arise in the penalization of the domain limit from whole space problems and obtain as a corollary the existence of solutions of these problems.
Type de document :
Article dans une revue
Journal of Differential Equations, Elsevier, 2014, 256 (4), pp.1368-1394
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00793393
Contributeur : Guy Barles <>
Soumis le : jeudi 24 octobre 2013 - 14:13:19
Dernière modification le : jeudi 7 février 2019 - 14:22:01
Document(s) archivé(s) le : vendredi 7 avril 2017 - 17:45:09

Fichiers

NBnonlocal-revision.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00793393, version 3
  • ARXIV : 1302.5568

Collections

Citation

Guy Barles, Christine Georgelin, Espen R. Jakobsen. On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations. Journal of Differential Equations, Elsevier, 2014, 256 (4), pp.1368-1394. 〈hal-00793393v3〉

Partager

Métriques

Consultations de la notice

347

Téléchargements de fichiers

305