Visual graph modeling for scene recognition and mobile robot localization

Abstract : Image retrieval and categorization may need to consider several types of visual features and spatial information between them (e.g., different point of views of an image). This paper presents a novel approach that exploits an extension of the language modeling approach from information retrieval to the problem of graph-based image retrieval and categorization. Such versatile graph model is needed to represent the multiple points of views of images. A language model is defined on such graphs to handle a fast graph matching. We present the experiments achieved with several instances of the proposed model on two collections of images: one composed of 3,849 touristic images and another composed of 3,633 images captured by a mobile robot. Experimental results show that using visual graph model (VGM) improves the accuracies of the results of the standard language model (LM) and outperforms the Support Vector Machine (SVM) method.
Type de document :
Article dans une revue
Multimedia Tools and Applications, Springer Verlag, 2012, 60 (2), pp.419-441. <10.1007/s11042-010-0598-8>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00742059
Contributeur : Eric Gaussier <>
Soumis le : vendredi 4 janvier 2013 - 15:22:30
Dernière modification le : mardi 28 octobre 2014 - 18:35:11
Document(s) archivé(s) le : vendredi 5 avril 2013 - 05:46:15

Fichier

Pham-al_MulltimediaTools_Appl....
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Trong-Ton Pham, Philippe Mulhem, Loïc Maisonnasse, Éric Gaussier, Joo-Hwee Lim. Visual graph modeling for scene recognition and mobile robot localization. Multimedia Tools and Applications, Springer Verlag, 2012, 60 (2), pp.419-441. <10.1007/s11042-010-0598-8>. <hal-00742059>

Partager

Métriques

Consultations de
la notice

180

Téléchargements du document

176