Adaptive split test for multivariate time series classification trees

Ahlame Douzal-Chouakria 1 Cécile Amblard 1, *
* Auteur correspondant
Abstract : This paper proposes an extension of the classification trees to time series input variables. A new split criterion based on time series proximities is introduced. First, it relies on an adaptive (i.e., parametrized) time series metric to cover both behavior and values proximities. The metric's parameters may change from one internal node to another to best bisect the set of time series. Second, it involves the automatic extraction of the most discriminating sub-sequences. The proposed time series classification tree is applied to a wide range of datasets: public and new, real and synthetic, univariate and multivariate data. We show, through the carried out experiments, that the proposed tree outperforms temporal trees using standard time series distances, and leads to good performances compared to other competitive time series classifiers.
Type de document :
Communication dans un congrès
CAp 2012 - Conférence Francophone sur l'Apprentissage Automatique, May 2012, Nancy, France. 16p., 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00741944
Contributeur : Ahlame Douzal <>
Soumis le : lundi 15 octobre 2012 - 15:25:37
Dernière modification le : mardi 28 octobre 2014 - 18:34:55
Document(s) archivé(s) le : samedi 17 décembre 2016 - 01:03:26

Fichier

Douzal-Amblard-CAP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00741944, version 1

Collections

Citation

Ahlame Douzal-Chouakria, Cécile Amblard. Adaptive split test for multivariate time series classification trees. CAp 2012 - Conférence Francophone sur l'Apprentissage Automatique, May 2012, Nancy, France. 16p., 2012. <hal-00741944>

Partager

Métriques

Consultations de
la notice

202

Téléchargements du document

136