Tensor-Based Preprocessing of Combined EEG/MEG Data

Abstract : Due to their good temporal resolution, electroencephalography (EEG) and magnetoencephalography (MEG) are two often used techniques for brain source analysis. In order to improve the results of source localization algorithms applied to EEG or MEG data, tensor-based preprocessing techniques can be used to separate the sources and reduce the noise. These methods are based on the Canonical Polyadic (CP) decomposition (also called Parafac) of space-time-frequency (STF) or space-time-wave-vector (STWV) data. In this paper, we analyze the combination of EEG and MEG data to enhance the performance of the tensor-based preprocessing. To this end, we consider the joint CP decomposition of two (or more) third order tensors with one or two identical loading matrices. We present the necessary modifications for several classical CP decomposition algorithms and examine the gain on performance in the EEG/MEG context by means of simulations.
Type de document :
Communication dans un congrès
Eurasip. 20th European Signal Processing Conference (EUSIPCO-2012), Aug 2012, Bucarest, Romania. Elsevier, pp.275-279, 2012
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00725280
Contributeur : Pierre Comon <>
Soumis le : mardi 25 juin 2013 - 12:40:24
Dernière modification le : vendredi 21 octobre 2016 - 01:24:09
Document(s) archivé(s) le : mercredi 5 avril 2017 - 04:23:21

Fichier

eusipco_v13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00725280, version 2

Collections

Citation

Hanna Becker, Pierre Comon, Laurent Albera. Tensor-Based Preprocessing of Combined EEG/MEG Data. Eurasip. 20th European Signal Processing Conference (EUSIPCO-2012), Aug 2012, Bucarest, Romania. Elsevier, pp.275-279, 2012. <hal-00725280v2>

Partager

Métriques

Consultations de
la notice

519

Téléchargements du document

214