LAST PASSAGE PERCOLATION AND TRAVELING FRONTS

Abstract : We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida. The particles can be interpreted as last passage times in directed percolation on {1,...,N} of mean-field type. The particles remain grouped and move like a traveling wave, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front and its profile, for different laws of the driving noise. The Gumbel distribution plays a central role for the particle jumps, and we show that the scaling limit is a Lévy process in this case. The case of bounded jumps yields a completely different behavior.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00677712
Contributeur : Francis Comets <>
Soumis le : mercredi 30 janvier 2013 - 21:04:16
Dernière modification le : lundi 29 mai 2017 - 14:25:20
Document(s) archivé(s) le : lundi 17 juin 2013 - 17:48:31

Fichiers

LPPTW-28-01-13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00677712, version 3
  • ARXIV : 1203.2368

Collections

UPMC | INSMI | USPC | PMA

Citation

Francis Comets, Jeremy Quastel, Alejandro F. Ramirez. LAST PASSAGE PERCOLATION AND TRAVELING FRONTS. 2013. 〈hal-00677712v3〉

Partager

Métriques

Consultations de
la notice

150

Téléchargements du document

60