Robust Regression through the Huber's criterion and adaptive lasso penalty

Sophie Lambert-Lacroix 1 Laurent Zwald 2, 3
1 TIMC-IMAG-BCM - Biologie Computationnelle et Mathématique
TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble
2 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
3 SAM - Statistique Apprentissage Machine
LJK - Laboratoire Jean Kuntzmann
Abstract : The Huber's Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber's criterion and adaptive penalty as lasso. This regression technique is resistant to heavy-tailed er- rors or outliers in the response. Furthermore, we show that the estimator associated with this procedure enjoys the oracle properties. This approach is compared with LAD-lasso based on least absolute deviation with adaptive lasso. Extensive simulation studies demonstrate satisfactory finite-sample performance of such procedure. A real example is analyzed for illustration purposes.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2011, 5, pp.1015-1053. 〈10.1214/11-EJS635〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00661864
Contributeur : Laurent Zwald <>
Soumis le : vendredi 20 janvier 2012 - 18:14:44
Dernière modification le : vendredi 26 octobre 2018 - 18:00:02
Document(s) archivé(s) le : samedi 21 avril 2012 - 02:41:41

Fichier

EJS635.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sophie Lambert-Lacroix, Laurent Zwald. Robust Regression through the Huber's criterion and adaptive lasso penalty. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2011, 5, pp.1015-1053. 〈10.1214/11-EJS635〉. 〈hal-00661864〉

Partager

Métriques

Consultations de la notice

740

Téléchargements de fichiers

505