Minimax fast rates for discriminant analysis with errors in variables

Abstract : The effect of measurement errors in discriminant analysis is investigated. Given observations $Z=X+\epsilon$, where $\epsilon$ denotes a random noise, the goal is to predict the density of $X$ among two possible candidates $f$ and $g$. We suppose that we have at our disposal two learning samples. The aim is to approach the best possible decision rule $G^\star$ defined as a minimizer of the Bayes risk. In the free-noise case $(\epsilon=0)$, minimax fast rates of convergence are well-known under the margin assumption in discriminant analysis (see \cite{mammen}) or in the more general classification framework (see \cite{tsybakov2004,AT}). In this paper we intend to establish similar results in the noisy case, i.e. when dealing with errors in variables. We prove minimax lower bounds for this problem and explain how can these rates be attained, using in particular an Empirical Risk Minimizer (ERM) method based on deconvolution kernel estimators.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2015, pp.30. 〈10.3150/13-BEJ564〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00660383
Contributeur : Clément Marteau <>
Soumis le : mardi 12 mai 2015 - 16:05:11
Dernière modification le : vendredi 14 septembre 2018 - 09:16:06
Document(s) archivé(s) le : lundi 14 septembre 2015 - 23:21:16

Fichiers

bej564.pdf
Accord explicite pour ce dépôt

Identifiants

Citation

Sébastien Loustau, Clément Marteau. Minimax fast rates for discriminant analysis with errors in variables. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2015, pp.30. 〈10.3150/13-BEJ564〉. 〈hal-00660383v3〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

75