Dual logarithmic residues and free complete intersections

Abstract : We introduce a dual logarithmic residue map for hypersurface singularities and use it to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by an algebraic characterization of hypersurfaces that are normal crossing in codimension one. For free divisors, we relate the latter condition to other natural conditions involving the Jacobian ideal and the normalization. This leads to an algebraic characterization of normal crossing divisors. We suggest a generalization of the notions of logarithmic vector fields and freeness for complete intersections. In the case of quasihomogeneous complete intersection space curves, we give an explicit description.
Type de document :
Pré-publication, Document de travail
This preprint is the same as a preprint with the same title in Arxiv org, version V3. 2012
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00656220
Contributeur : Michel Granger <>
Soumis le : mercredi 11 janvier 2012 - 22:43:42
Dernière modification le : lundi 5 février 2018 - 15:00:03
Document(s) archivé(s) le : mardi 13 décembre 2016 - 22:32:43

Fichier

dlr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00656220, version 2

Collections

Citation

Michel Granger, Mathias Schulze. Dual logarithmic residues and free complete intersections. This preprint is the same as a preprint with the same title in Arxiv org, version V3. 2012. 〈hal-00656220v2〉

Partager

Métriques

Consultations de la notice

181

Téléchargements de fichiers

189