Spherical Radon transform and the average of the condition number on certain Schubert subvarieties of a Grassmannian

Abstract : We study the average complexity of certain numerical algorithms when adapted to solving systems of multivariate polynomial equations whose coefficients belong to some fixed proper real subspace of the space of systems with complex coefficients. A particular motivation is the study of the case of systems of polynomial equations with real coefficients. Along these pages, we accept methods that compute either real or complex solutions of these input systems. This study leads to interesting problems in Integral Geometry: the question of giving estimates on the average of the normalized condition number along great circles that belong to a Schubert subvariety of the Grassmannian of great circles on a sphere. We prove that this average equals a closed formula in terms of the spherical Radon transform of the condition number along a totally geodesic submanifold of the sphere.
Type de document :
Article dans une revue
Journal of Complexity, Elsevier, 2012, 28 (3), pp.388 -- 421. <10.1016/j.jco.2011.11.005>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00612612
Contributeur : Jérémy Berthomieu <>
Soumis le : jeudi 30 avril 2015 - 11:36:09
Dernière modification le : mardi 23 mai 2017 - 01:00:38
Document(s) archivé(s) le : lundi 14 septembre 2015 - 16:21:20

Fichiers

BertPard11e.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jérémy Berthomieu, Luis Pardo. Spherical Radon transform and the average of the condition number on certain Schubert subvarieties of a Grassmannian. Journal of Complexity, Elsevier, 2012, 28 (3), pp.388 -- 421. <10.1016/j.jco.2011.11.005>. <hal-00612612v2>

Partager

Métriques

Consultations de
la notice

52

Téléchargements du document

66