Record process on the Continuum Random Tree

Abstract : By considering a continuous pruning procedure on Aldous's Brownian tree, we construct a random variable $\Theta$ which is distributed, conditionally given the tree, according to the probability law introduced by Janson as the limit distribution of the number of cuts needed to isolate the root in a critical Galton-Watson tree. We also prove that this random variable can be obtained as the a.s. limit of the number of cuts needed to cut down the subtree of the continuum tree spanned by $n$ leaves.
Type de document :
Article dans une revue
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2013, 10, pp.251
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00609467
Contributeur : Romain Abraham <>
Soumis le : vendredi 1 février 2013 - 18:47:38
Dernière modification le : vendredi 4 mai 2018 - 01:17:27
Document(s) archivé(s) le : jeudi 2 mai 2013 - 05:20:07

Fichiers

record_2013_01.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00609467, version 3
  • ARXIV : 1107.3657

Collections

Citation

Romain Abraham, Jean-François Delmas. Record process on the Continuum Random Tree. ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2013, 10, pp.251. 〈hal-00609467v3〉

Partager

Métriques

Consultations de la notice

255

Téléchargements de fichiers

108