Skip to Main content Skip to Navigation
Journal articles

Carleman estimates for anisotropic elliptic operators with jumps at an interface

Abstract : We consider a second-order selfadjoint elliptic operator with an anisotropic diffusion matrix having a jump across a smooth hypersurface. We prove the existence of a weight-function such that a Carleman estimate holds true. We moreover prove that the conditions imposed on the weight function are sharp.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00546869
Contributor : Jérôme Le Rousseau <>
Submitted on : Sunday, April 14, 2013 - 9:47:28 AM
Last modification on : Friday, April 10, 2020 - 5:15:07 PM
Document(s) archivé(s) le : Monday, April 3, 2017 - 4:54:54 AM

Files

jlr-nl.pdf
Files produced by the author(s)

Identifiers

Citation

Jérôme Le Rousseau, Nicolas Lerner. Carleman estimates for anisotropic elliptic operators with jumps at an interface. Anal. PDE, 2013, 6 (7), pp.1601-1648. ⟨10.2140/apde.2013.6.1601⟩. ⟨hal-00546869v2⟩

Share

Metrics

Record views

861

Files downloads

933