Random walks in Weyl chambers and crystals

Abstract : We use Kashiwara crystal basis theory to associate a random walk W to each irreducible representation V of a simple Lie algebra. This is achieved by endowing the crystal attached to V with a (possibly non uniform) probability distribution compatible with its weight graduation. We then prove that the generalized Pitmann transform defined by Biane, Bougerol and O'Connell for similar random walks with uniform distributions yields yet a Markov chain. When the representation is minuscule, and the associated random walk has a drift in the Weyl chamber, we establish that this Markov chain has the same law as W conditionned to never exit the cone of dominant weights. At the heart of our proof is a quotient version of a renewal theorem that we state in the context of general random walks in a lattice.
Type de document :
Article dans une revue
Proceedings of the London Mathematical Society, London Mathematical Society, 2012, 104 (2), pp.323 - 358
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00525592
Contributeur : Emmanuel Lesigne <>
Soumis le : dimanche 19 décembre 2010 - 09:53:59
Dernière modification le : mercredi 29 août 2018 - 01:09:07
Document(s) archivé(s) le : dimanche 20 mars 2011 - 02:25:32

Fichiers

PathCryst_RW.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00525592, version 2
  • ARXIV : 1010.2341

Collections

Citation

Cédric Lecouvey, Emmanuel Lesigne, Marc Peigné. Random walks in Weyl chambers and crystals. Proceedings of the London Mathematical Society, London Mathematical Society, 2012, 104 (2), pp.323 - 358. 〈hal-00525592v2〉

Partager

Métriques

Consultations de la notice

289

Téléchargements de fichiers

137