A Majorize-Minimize strategy for subspace optimization applied to image restoration

Abstract : This paper proposes accelerated subspace optimization methods in the context of image restoration. Subspace optimization methods belong to the class of iterative descent algorithms for unconstrained optimization. At each iteration of such methods, a stepsize vector allowing the best combination of several search directions is computed through a multi-dimensional search. It is usually obtained by an inner iterative second-order method ruled by a stopping criterion that guarantees the convergence of the outer algorithm. As an alternative, we propose an original multi-dimensional search strategy based on the majorize-minimize principle. It leads to a closed-form stepsize formula that ensures the convergence of the subspace algorithm whatever the number of inner iterations. The practical efficiency of the proposed scheme is illustrated in the context of edge-preserving image restoration.
Type de document :
Pré-publication, Document de travail
2010
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00516585
Contributeur : Emilie Chouzenoux <>
Soumis le : vendredi 10 septembre 2010 - 11:24:51
Dernière modification le : mercredi 19 décembre 2018 - 15:02:03
Document(s) archivé(s) le : samedi 11 décembre 2010 - 02:45:02

Fichier

manuscriptHal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00516585, version 1

Collections

Citation

Emilie Chouzenoux, Jérôme Idier, Saïd Moussaoui. A Majorize-Minimize strategy for subspace optimization applied to image restoration. 2010. 〈hal-00516585〉

Partager

Métriques

Consultations de la notice

226

Téléchargements de fichiers

288