Sparse approaches for the exact distribution of patterns in long state sequences generated by a Markov source

Abstract : We present two novel approaches for the computation of the exact distribution of a pattern in a long sequence. Both approaches take into account the sparse structure of the problem and are two-part algorithms. The first approach relies on a partial recursion after a fast computation of the second largest eigenvalue of the transition matrix of a Markov chain embedding. The second approach uses fast Taylor expansions of an exact bivariate rational reconstruction of the distribution. We illustrate the interest of both approaches on a simple toy-example and two biological applications: the transcription factors of the Human Chromosome 5 and the PROSITE signatures of functional motifs in proteins. On these example our methods demonstrate their complementarity and their hability to extend the domain of feasibility for exact computations in pattern problems to a new level.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00492738
Contributeur : Jean-Guillaume Dumas <>
Soumis le : mardi 5 juin 2012 - 15:37:58
Dernière modification le : mardi 11 octobre 2016 - 13:25:12
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 10:21:06

Fichiers

symbnum_pattern_sparse.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Grégory Nuel, Jean-Guillaume Dumas. Sparse approaches for the exact distribution of patterns in long state sequences generated by a Markov source. Theoretical Computer Science, Elsevier, 2013, 479, pp.22-42. <10.1016/j.tcs.2012.10.019>. <hal-00492738v4>

Partager

Métriques

Consultations de
la notice

423

Téléchargements du document

121