Analysis of a finite volume method for a cross-diffusion model in population dynamics

Abstract : The main goal of this work is to propose a convergent finite volume method for a reaction-diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to S.N.~Kruzhkov. The proofs of these results are given in the Appendix.
Type de document :
Article dans une revue
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2011, 21 (02), pp.307-344. 〈10.1142/S0218202511005064〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00458737
Contributeur : Ricardo Ruiz Baier <>
Soumis le : lundi 1 mars 2010 - 17:28:44
Dernière modification le : vendredi 6 juillet 2018 - 15:18:04
Document(s) archivé(s) le : mercredi 30 novembre 2016 - 14:45:05

Fichier

abr_preprint.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

Boris Andreianov, Mostafa Bendahmane, Ricardo Ruiz Baier. Analysis of a finite volume method for a cross-diffusion model in population dynamics. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2011, 21 (02), pp.307-344. 〈10.1142/S0218202511005064〉. 〈hal-00458737v2〉

Partager

Métriques

Consultations de la notice

518

Téléchargements de fichiers

435