Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms

Abstract : Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-overlapping strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem d-gap-MSR, where d is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. Depending on the nature of the comparative maps (i.e., with or without duplicates), we show that d-gap-MSR is NP-complete for any d ≥ 1, and even APX-hard for any d ≥ 2. We also provide two approximation algorithms, with ratio 1.8 for d = 1, and ratio 4 for d ≥ 2.
Type de document :
Communication dans un congrès
ISAAC 2009 (20th International Symposium on Algorithms and Computation), 2009, Hawaii, United States. Springer-Verlag, 5878, pp.710-719, 2009, Lecture Notes in Computer Science (LNCS)
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00425145
Contributeur : Guillaume Fertin <>
Soumis le : mardi 20 octobre 2009 - 12:16:10
Dernière modification le : jeudi 5 avril 2018 - 10:36:49
Document(s) archivé(s) le : mardi 15 juin 2010 - 21:59:54

Fichier

MSRFinal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00425145, version 1

Collections

Citation

Laurent Bulteau, Guillaume Fertin, Irena Rusu. Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms. ISAAC 2009 (20th International Symposium on Algorithms and Computation), 2009, Hawaii, United States. Springer-Verlag, 5878, pp.710-719, 2009, Lecture Notes in Computer Science (LNCS). 〈hal-00425145〉

Partager

Métriques

Consultations de la notice

194

Téléchargements de fichiers

98