Common Structured Patterns in Linear Graphs: Approximations and Combinatorics

Abstract : A linear graph is a graph whose vertices are linearly ordered. This linear ordering allows pairs of disjoint edges to be either preceding (<), nesting (⊏) or crossing (≬). Given a family of linear graphs, and a non-empty subset R ⊆ {<,⊏, ≬}, we are interested in the MCSP problem: Find a maximum size edge-disjoint graph, with edge-pairs all comparable by one of the relations in R, that occurs as a subgraph in each of the linear graphs of the family. In this paper, we generalize the framework of Davydov and Batzoglou by considering patterns comparable by all possible subsets R ⊆ {<,⊏, ≬}. This is motivated by the fact that many biological applications require considering crossing structures, and by the fact that different combinations of the relations above give rise to different generalizations of natural combinatorial problems. Our results can be summarized as follows: We give tight hardness results for the MCSP problem for {<, ≬}-structured patterns and {⊏, ≬}-structured patterns. Furthermore, we prove that the problem is approximable within ratios: (i) 2H (k) for {<, ≬}-structured patterns, (ii) k1/2 for {⊏, ≬}-structured patterns, and (iii) O(√k lg k) for {<,⊏, ≬}-structured patterns, where k is the size of the optimal solution and H (k) = Pk i=1 1/i is the k-th harmonic number.
Type de document :
Communication dans un congrès
18th Annual Symposium on Combinatorial Pattern Matching (CPM 2007), 2007, London, Canada. Springer-Verlag, Lecture Notes in Computer Science (LNCS) (4580), pp.214-252, 2007, Lecture Notes in Computer Science (LNCS)
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00418241
Contributeur : Guillaume Fertin <>
Soumis le : jeudi 17 septembre 2009 - 16:28:40
Dernière modification le : mercredi 23 mai 2018 - 15:44:02
Document(s) archivé(s) le : mardi 15 juin 2010 - 23:51:14

Fichier

CPM07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00418241, version 1

Citation

Guillaume Fertin, Danny Hermelin, Romeo Rizzi, Stéphane Vialette. Common Structured Patterns in Linear Graphs: Approximations and Combinatorics. 18th Annual Symposium on Combinatorial Pattern Matching (CPM 2007), 2007, London, Canada. Springer-Verlag, Lecture Notes in Computer Science (LNCS) (4580), pp.214-252, 2007, Lecture Notes in Computer Science (LNCS). 〈hal-00418241〉

Partager

Métriques

Consultations de la notice

339

Téléchargements de fichiers

93