Latin hypercube sampling with inequality constraints

Abstract : In some studies requiring predictive and CPU-time consuming numerical models, the sampling design of the model input variables has to be chosen with caution. For this purpose, Latin hypercube sampling has a long history and has shown its robustness capabilities. In this paper we propose and discuss a new algorithm to build a Latin hypercube sample (LHS) taking into account inequality constraints between the sampled variables. This technique, called constrained Latin hypercube sampling (cLHS), consists in doing permutations on an initial LHS to honor the desired monotonic constraints. The relevance of this approach is shown on a real example concerning the numerical welding simulation, where the inequality constraints are caused by the physical decreasing of some material properties in function of the temperature.
Type de document :
Article dans une revue
AStA Advances in Statistical Analysis, Springer Verlag, 2010, 94, pp.325-339
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00412235
Contributeur : Bertrand Iooss <>
Soumis le : mercredi 22 septembre 2010 - 08:13:17
Dernière modification le : lundi 10 septembre 2018 - 13:50:02
Document(s) archivé(s) le : jeudi 23 décembre 2010 - 02:46:51

Fichiers

AStA10_iooss_rev2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00412235, version 3
  • ARXIV : 0909.0329

Collections

CEA | INSMI | DEN | DRIVE

Citation

Matthieu Petelet, Bertrand Iooss, Olivier Asserin, Alexandre Loredo. Latin hypercube sampling with inequality constraints. AStA Advances in Statistical Analysis, Springer Verlag, 2010, 94, pp.325-339. 〈hal-00412235v3〉

Partager

Métriques

Consultations de la notice

332

Téléchargements de fichiers

342