Risk bounds in linear regression through PAC-Bayesian truncation

Jean-Yves Audibert 1, 2 Olivier Catoni 3, *
* Corresponding author
1 IMAGINE [Marne-la-Vallée]
LIGM - Laboratoire d'Informatique Gaspard-Monge, CSTB - Centre Scientifique et Technique du Bâtiment, ENPC - École des Ponts ParisTech
2 WILLOW - Models of visual object recognition and scene understanding
CNRS - Centre National de la Recherche Scientifique : UMR8548, Inria Paris-Rocquencourt, DI-ENS - Département d'informatique de l'École normale supérieure
Abstract : We consider the problem of predicting as well as the best linear combination of d given functions in least squares regression, and variants of this problem including constraints on the parameters of the linear combination. When the input distribution is known, there already exists an algorithm having an expected excess risk of order d/n, where n is the size of the training data. Without this strong assumption, standard results often contain a multiplicative log n factor, and require some additional assumptions like uniform boundedness of the d-dimensional input representation and exponential moments of the output. This work provides new risk bounds for the ridge estimator and the ordinary least squares estimator, and their variants. It also provides shrinkage procedures with convergence rate d/n (i.e., without the logarithmic factor) in expectation and in deviations, under various assumptions. The key common surprising factor of these results is the absence of exponential moment condition on the output distribution while achieving exponential deviations. All risk bounds are obtained through a PAC-Bayesian analysis on truncated differences of losses. Finally, we show that some of these results are not particular to the least squares loss, but can be generalized to similar strongly convex loss functions.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [21 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00360268
Contributor : Jean-Yves Audibert <>
Submitted on : Saturday, July 3, 2010 - 10:12:07 PM
Last modification on : Tuesday, April 2, 2019 - 2:15:47 PM
Document(s) archivé(s) le : Monday, October 4, 2010 - 12:19:08 PM

Files

dovern_pour_hal.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00360268, version 2
  • ARXIV : 0902.1733

Citation

Jean-Yves Audibert, Olivier Catoni. Risk bounds in linear regression through PAC-Bayesian truncation. 2010. ⟨hal-00360268v2⟩

Share

Metrics

Record views

1110

Files downloads

269