Mechanical characterization of a polysiloxane-derived SiOC glass - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the European Ceramic Society Année : 2007

Mechanical characterization of a polysiloxane-derived SiOC glass

C. Moysan
  • Fonction : Auteur
R. Riedel
  • Fonction : Auteur
R. Harshe
  • Fonction : Auteur
Tanguy Rouxel

Résumé

Silicon oxycarbide glass with the composition Si1.0O1.6C0.8 was synthesized from a commercial polysiloxane by polymer pyrolysis. Dense SiOC samples were obtained by cross linking of the polysiloxane followed by warm pressing to form cylindrical samples and subsequent pyrolysis of the shaped polymer at 1100 °C in Ar. Hardness (H), Young's modulus (E) and Poisson's ratio (ν) of the as-prepared SiOC glass were evaluated from indentation studies and from acoustic microscopy. Indentation studies showed that E depends on the applied load and amounts to 90 GPa for low load and to 180 GPa for high load. Average values of 6.4 and 101 GPa were obtained for H and E, respectively, by the Vickers indentation method. Acoustic microscopy analysis yielded values of 96 GPa and 0.11 for E and ν, respectively. Compared to vitreous silica, the Young's modulus of the SiOC glass is about 1.3–1.5 times higher. To the knowledge of the present authors, the measured Poisson's ratio (ν = 0.11) is the lowest reported so far for glasses and polycrystalline ceramics

Domaines

Electronique

Dates et versions

hal-00327628 , version 1 (09-10-2008)

Identifiants

Citer

C. Moysan, R. Riedel, R. Harshe, Tanguy Rouxel, F. Augereau. Mechanical characterization of a polysiloxane-derived SiOC glass. Journal of the European Ceramic Society, 2007, 27 (1), pp.397-403. ⟨10.1016/j.jeurceramsoc.2006.01.016⟩. ⟨hal-00327628⟩
85 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More