Inviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition

Abstract : Using a weak convergence approach, we prove a LPD for the solution of 2D stochastic Navier Stokes equations when the viscosity converges to 0 and the noise intensity is multiplied by the square root of the viscosity. Unlike previous results on LDP for hydrodynamical models, the weak convergence is proven by tightness properties of the distribution of the solution in appropriate functional spaces.
Document type :
Journal articles
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2012, 44 (3), pp.1861-1893. 〈10.1137/110827235〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00537662
Contributor : Annie Millet <>
Submitted on : Thursday, April 26, 2012 - 11:06:15 PM
Last modification on : Wednesday, October 12, 2016 - 1:17:21 AM
Document(s) archivé(s) le : Friday, July 27, 2012 - 2:41:00 AM

Files

BesMil_07Mar2012.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Hakima Bessaih, Annie Millet. Inviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2012, 44 (3), pp.1861-1893. 〈10.1137/110827235〉. 〈hal-00537662v2〉

Share

Metrics

Record views

357

Document downloads

90