Oriented triplet Markov fields

Abstract : Hidden Markov Field modeling is widely used for image segmentation. However, it sometimes lacks power to handle complex situations, e.g. correlated noise, textures or non-stationarities. This is why Pairwise, and then Triplet Markov Fields were introduced to handle in a generic fashion more complex observations. In this paper, we tackle the problem of anisotropic image modeling by introducing an Oriented Triplet Markov Field model, able to explicitly deal with oriented structures. Using oriented features in the framework of Triplet Markov Field modeling, we compare the behavior of this model towards other Markovian modeling on images containing such oriented pattern. We present experiments on synthetic data for segmentation, and application to real data from remote sensing images
Type de document :
Article dans une revue
Pattern Recognition Letters, Elsevier, 2018, 103, pp.16-22. 〈10.1016/j.patrec.2017.12.026〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01744716
Contributeur : Jean-Baptiste Courbot <>
Soumis le : mardi 27 mars 2018 - 15:47:20
Dernière modification le : samedi 27 octobre 2018 - 01:24:32
Document(s) archivé(s) le : jeudi 13 septembre 2018 - 09:56:28

Fichier

prl_2.0.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet, Christophe Collet. Oriented triplet Markov fields. Pattern Recognition Letters, Elsevier, 2018, 103, pp.16-22. 〈10.1016/j.patrec.2017.12.026〉. 〈hal-01744716〉

Partager

Métriques

Consultations de la notice

124

Téléchargements de fichiers

56