Analyse mathématique et numérique de problèmes de propagation des ondes dans des milieux périodiques infinis localement perturbés

Sonia Fliss 1, 2
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Résumé : Les milieux périodiques présentent des propriétés intéressantes dans un grand nombre d'applications (les cristaux photoniques en optique, les matériaux composites en mécanique,...). Dans ces applications, on rencontre souvent ces milieux présentant des défauts localisés, c'est-à-dire des milieux qui diffèrent de milieux périodiques dans des régions bornées. Il nous semble intéressant de proposer des méthodes mathématiques et numériques nouvelles spécifiques au traitement des structures périodiques de grande taille, pouvant présenter des défauts localisés. Les caractéristiques du problème rendant très souvent les méthodes d'homogénéisation inapplicables, l'idée est d'exploiter la structure particulière des milieux périodiques pour restreindre les calculs au voisinage du défaut. Nous avons donc approfondi la question de trouver des conditions aux bords parfaitement transparentes. C'est pourquoi nous avons cherché à généraliser les techniques de conditions transparentes non locales, de type Neumann-to-Dirichlet, bien établies pour les milieux homogènes à l'extérieur de la perturbation. La difficulté est que lorsque le milieu extérieur est homogène, on ne dispose plus d'une représentation explicite de la solution. Nous traitons successivement trois situations de difficulté croissante : le cas mono-dimensionnel qui est un cas classique mais dont l'étude a des vertus pédagogiques, le problème du guide périodique localement perturbé et le problème plus complexe du milieu périodique dans les deux dimensions. Pour chaque situation, la démarche est la même : elle consiste tout d'abord à résoudre le problème pour un milieu absorbant puis pour un milieu non absorbant par absorption limite. Nous pouvons alors montrer que les opérateurs DtN peuvent être caractérisés en utilisant la solution de problèmes de cellule locaux, l'utilisation d'outils mathématiques tels que la Transformée de Floquet-Bloch et la solution d'équations quadratiques et linéaires à valeurs et inconnus opérateurs.
Type de document :
Thèse
Mathématiques [math]. Ecole Polytechnique X, 2009. Français
Liste complète des métadonnées

https://pastel.archives-ouvertes.fr/pastel-00005464
Contributeur : Ecole Polytechnique <>
Soumis le : mardi 13 avril 2010 - 08:00:00
Dernière modification le : jeudi 10 mai 2018 - 02:04:20
Document(s) archivé(s) le : vendredi 10 septembre 2010 - 14:36:10

Fichier

Identifiants

  • HAL Id : pastel-00005464, version 1

Collections

Citation

Sonia Fliss. Analyse mathématique et numérique de problèmes de propagation des ondes dans des milieux périodiques infinis localement perturbés. Mathématiques [math]. Ecole Polytechnique X, 2009. Français. 〈pastel-00005464〉

Partager

Métriques

Consultations de la notice

723

Téléchargements de fichiers

2740