Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string

Juliette Chabassier 1 Patrick Joly 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This paper considers a general class of nonlinear systems, "nonlinear Hamiltonian systems of wave equations". The first part of our work focuses on the mathematical study of these systems, showing central properties (energy preservation, stability, hyperbolicity, finite propagation velocity, etc.). Space discretization is made in a classical way (variational formulation) and time discretization aims at numerical stability using an energy technique. A definition of "preserving schemes" is introduced, and we show that explicit schemes or partially implicit schemes which are preserving according to this definition cannot be built unless the model is trivial. A general energy preserving second order accurate fully implicit scheme is built for any continuous system that fits the nonlinear Hamiltonian systems of wave equations class. The problem of the vibration of a piano string is taken as an example. Nonlinear coupling between longitudinal and transversal modes is modeled in the "geometrically exact model", or approximations of this model. Numerical results are presented.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2010, 199 (45-48), pp.2779-2795. <10.1016/j.cma.2010.04.013>
Liste complète des métadonnées


https://hal.inria.fr/inria-00534473
Contributeur : Juliette Chabassier <>
Soumis le : mardi 15 octobre 2013 - 09:48:11
Dernière modification le : jeudi 9 février 2017 - 15:47:25
Document(s) archivé(s) le : jeudi 16 janvier 2014 - 09:26:45

Fichier

SubCMAME.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Juliette Chabassier, Patrick Joly. Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2010, 199 (45-48), pp.2779-2795. <10.1016/j.cma.2010.04.013>. <inria-00534473>

Partager

Métriques

Consultations de
la notice

396

Téléchargements du document

170