HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Why one must use reweighting in Estimation Of Distribution Algorithms

Fabien Teytaud 1, 2 Olivier Teytaud 3, 4, 5
3 TANC - Algorithmic number theory for cryptology
Inria Saclay - Ile de France, LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau]
5 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We study the update of the distribution in Estimation of Distribution Algorithms, and show that a simple modification leads to unbiased estimates of the optimum. The simple modification (based on a proper reweighting of estimates) leads to a strongly improved behavior in front of premature convergence.
Document type :
Conference papers
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/inria-00369780
Contributor : Olivier Teytaud Connect in order to contact the contributor
Submitted on : Saturday, March 21, 2009 - 8:51:33 AM
Last modification on : Thursday, July 8, 2021 - 3:48:44 AM
Long-term archiving on: : Thursday, June 10, 2010 - 5:57:17 PM

File

weighted.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00369780, version 1

Citation

Fabien Teytaud, Olivier Teytaud. Why one must use reweighting in Estimation Of Distribution Algorithms. GECCO, 2009, Montréal, Canada. ⟨inria-00369780⟩

Share

Metrics

Record views

236

Files downloads

363