A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity

Raymond Ros 1, 2 Nikolaus Hansen 1
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : This report proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions that reduces the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduced, the learning rate for the covariance matrix can be increased. Consequently, on essentially separable functions, sep-CMA-ES significantly outperforms CMA-ES. For dimension larger than 100, even on the non-separable Rosenbrock function, the sep-CMA-ES needs fewer function evaluations than CMA-ES.
Document type :
[Research Report] RR-6498, INRIA. 2008
Liste complète des métadonnées

Contributor : Raymond Ros <>
Submitted on : Monday, June 30, 2008 - 11:18:12 AM
Last modification on : Thursday, February 9, 2017 - 3:05:43 PM
Document(s) archivé(s) le : Saturday, November 26, 2016 - 12:30:12 AM


Files produced by the author(s)


  • HAL Id : inria-00270901, version 4


Raymond Ros, Nikolaus Hansen. A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity. [Research Report] RR-6498, INRIA. 2008. <inria-00270901v4>



Record views


Document downloads