Worst Cases of a Periodic Function for Large Arguments

Guillaume Hanrot 1 Vincent Lefèvre 2 Damien Stehlé 2 Paul Zimmermann 1
1 CACAO - Curves, Algebra, Computer Arithmetic, and so On
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : One considers the problem of finding hard to round cases of a periodic function for large floating-point inputs, more precisely when the function cannot be efficiently approximated by a polynomial. This is one of the last few issues that prevents from guaranteeing an efficient computation of correctly rounded transcendentals for the whole IEEE-754 double precision format. The first non-naive algorithm for that problem is presented, with an heuristic complexity of $O(2^{0.676 p})$ for a precision of $p$ bits. The efficiency of the algorithm is shown on the largest IEEE-754 double precision binade for the sine function, and some corresponding bad cases are given. We can hope that all the worst cases of the trigonometric functions in their whole domain will be found within a few years, a task that was considered out of reach until now.
Type de document :
Communication dans un congrès
Peter Kornerup and Jean-Michel Muller. 18th IEEE Symposium in Computer Arithmetic, Jun 2007, Montpellier, France. IEEE, pp.133-140, 2007, 〈10.1109/ARITH.2007.37〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00126474
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 29 janvier 2007 - 14:56:55
Dernière modification le : vendredi 29 septembre 2017 - 13:44:03
Document(s) archivé(s) le : mardi 21 septembre 2010 - 12:28:06

Fichiers

RR-6106.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, Paul Zimmermann. Worst Cases of a Periodic Function for Large Arguments. Peter Kornerup and Jean-Michel Muller. 18th IEEE Symposium in Computer Arithmetic, Jun 2007, Montpellier, France. IEEE, pp.133-140, 2007, 〈10.1109/ARITH.2007.37〉. 〈inria-00126474v2〉

Partager

Métriques

Consultations de la notice

439

Téléchargements de fichiers

165