Radiation stability of fluorite-type nuclear oxides - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2008

Radiation stability of fluorite-type nuclear oxides

Résumé

Oxides with the fluorite-type structure are radiation tolerant materials. They are widely used or envisaged in hostile nuclear environments, such as nuclear fuels or inert transmutation matrices for actinide burning. Study of the radiation stability of this class of solids in various radiative fields is of major importance. Two issues which may affect the stability of materials are considered in this work: the production of radiation damage (ballistic contribution); the modification of the matrix composition by doping (chemical contribution). Both contributions may drastically affect the solid stability. Urania and zirconia single crystals were chosen as fluorite-type canonical systems. They were implanted with low-energy inert gases (He or Xe). The damage in-growth, due to both ballistic and chemical contributions, was investigated by in situ RBS/C experiments in the channelling mode and TEM. Two main steps in the disordering kinetics were observed for both inert gases. Relevant key parameters were found to be: the number of displaced lattice atoms created by the slowing-down of energetic ions during the implantation process,, the concentration of noble gas atoms in the solid which cause the formation of large stress fields surrounding gas aggregates. (C) 2008 Elsevier B.V. All rights reserved.

Dates et versions

in2p3-00825710 , version 1 (24-05-2013)

Identifiants

Citer

F. Garrido, L. Vincent, L. Nowicki, G. Sattonnay, L. Thome. Radiation stability of fluorite-type nuclear oxides. 14th International Conference on Radiation Effects in Insulators (REI-14), 2007, Caen, France. pp.2842-2847, ⟨10.1016/j.nimb.2008.03.128⟩. ⟨in2p3-00825710⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More