Physiological maturation of photoreceptors depends on the voltage-gated sodium channel NaV1.6 (Scn8a) - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Neuroscience Année : 2005

Physiological maturation of photoreceptors depends on the voltage-gated sodium channel NaV1.6 (Scn8a)

Résumé

Voltage-gated sodium channels (VGSCs) ensure the saltatory propagation of action potentials along axons by acting as signal amplifiers at the nodes of Ranvier. In the retina, activity mediated by VGSCs is important for the refinement of the retinotectal map. Here, we conducted a full-field electroretinogram (ERG) study on mice null for the sodium channel NaV1.6. Interestingly, the light-activated hyperpolarization of photoreceptor cells (the a-wave) and the major "downstream" components of the ERG, the b-wave and the oscillatory potentials, are markedly reduced and delayed in these mice. The functional deficit was not associated with any morphological abnormality. We demonstrate that Scn8a is expressed in the ganglion and inner nuclear layers and at low levels in the outer nuclear layer beginning shortly before the observed ERG deficit. Together, our data reveal a previously unappreciated role for VGSCs in the physiological maturation of photoreceptors.

Dates et versions

hal-04135456 , version 1 (20-06-2023)

Identifiants

Citer

Patrice D. Côté, Yves de Repentigny, Stuart G. Coupland, Yannick Schwab, Michel Roux, et al.. Physiological maturation of photoreceptors depends on the voltage-gated sodium channel NaV1.6 (Scn8a). Journal of Neuroscience, 2005, 25 (20), pp.5046-5050. ⟨10.1523/JNEUROSCI.4692-04.2005⟩. ⟨hal-04135456⟩
4 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More