Almost sure contraction for diffusions on $\mathbb R^d$. Application to generalised Langevin diffusions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Stochastic Processes and their Applications Année : 2023

Almost sure contraction for diffusions on $\mathbb R^d$. Application to generalised Langevin diffusions

Résumé

In the case of diffusions on $\mathbb R^d$ with constant diffusion matrix, without assuming reversibility nor hypoellipticity, we prove that the contractivity of the deterministic drift is equivalent to the constant rate contraction of Wasserstein distances $\mathcal W_p$, $p\in[1,\infty]$. It also implies concentration inequalities for ergodic means of the process. Such a contractivity property is then established for some non-equilibrium chains of anharmonic oscillators and for some generalised Langevin diffusions when the potential is convex with bounded Hessian and the friction is sufficiently high. This extends previous known results for the usual (kinetic) Langevin diffusion.
Fichier principal
Vignette du fichier
version arXiv 2023 (1).pdf (440.2 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03762614 , version 1 (27-06-2023)
hal-03762614 , version 2 (18-09-2023)

Identifiants

Citer

Pierre Monmarché. Almost sure contraction for diffusions on $\mathbb R^d$. Application to generalised Langevin diffusions. Stochastic Processes and their Applications, 2023, 161, pp.316-349. ⟨10.1016/j.spa.2023.04.006⟩. ⟨hal-03762614v2⟩
18 Consultations
11 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More