Response of Arctic ozone to sudden stratospheric warmings - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2018

Response of Arctic ozone to sudden stratospheric warmings

Alvaro de La Cámara
  • Fonction : Auteur
Marta Abalos
  • Fonction : Auteur
Natalia Calvo
  • Fonction : Auteur
Rolando R. Garcia
  • Fonction : Auteur

Résumé

Sudden stratospheric warmings (SSWs) are the main source of intra-seasonal and interannual variability in the extratropical stratosphere. The profound alterations to the stratospheric circulation that accompany such events produce rapid changes in the atmospheric composition. The goal of this study is to deepen our understanding of the dynamics that control changes of Arctic ozone during the life cycle of SSWs, providing a quantitative analysis of advective transport and mixing. We use output from four ensemble members (60 years each) of the Whole Atmospheric Community Climate Model version 4 performed for the Chemistry Climate Model Initiative and also use reanalysis and satellite data for validation purposes. The composite evolution of ozone displays positive mixing ratio anomalies of up to 0.5-0.6 ppmv above 550 K ( ∼ 50 hPa) around the central warming date and negative anomalies below (-0.2 to -0.3 ppmv), consistently in observations, reanalysis, and the model. Our analysis shows a clear temporal offset between ozone eddy transport and diffusive ozone fluxes. The initial changes in ozone are mainly driven by isentropic eddy fluxes linked to enhanced wave drag responsible for the SSW. The recovery of climatological values in the aftermath of SSWs is slower in the lower than in the upper stratosphere and is driven by the competing effects of cross-isentropic motions (which work towards the recovery) and isentropic irreversible mixing (which delays the recovery). These features are enhanced in strength and duration during sufficiently deep SSWs, particularly those followed by polar-night jet oscillation (PJO) events. It is found that SSW-induced ozone concentration anomalies below 600 K ( ∼ 40 hPa), as well as total column estimates, persist around 1 month longer in PJO than in non-PJO warmings.
Fichier principal
Vignette du fichier
acp-18-16499-2018.pdf (1.67 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03658649 , version 1 (04-05-2022)

Licence

Paternité

Identifiants

Citer

Alvaro de La Cámara, Marta Abalos, Peter Hitchcock, Natalia Calvo, Rolando R. Garcia. Response of Arctic ozone to sudden stratospheric warmings. Atmospheric Chemistry and Physics, 2018, 18, pp.16499-16513. ⟨10.5194/acp-18-16499-2018⟩. ⟨hal-03658649⟩
7 Consultations
23 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More