Skip to Main content Skip to Navigation
Journal articles

TOPOLOGY OF 1-PARAMETER DEFORMATIONS OF NON-ISOLATED REAL SINGULARITIES

Abstract : Abstract Let $f\,{:}\,(\mathbb R^n,0)\to (\mathbb R,0)$ be an analytic function germ with non-isolated singularities and let $F\,{:}\, (\mathbb{R}^{1+n},0) \to (\mathbb{R},0)$ be a 1-parameter deformation of f . Let $ f_t ^{-1}(0) \cap B_\epsilon^n$ , $0 < \vert t \vert \ll \epsilon$ , be the “generalized” Milnor fiber of the deformation F . Under some conditions on F , we give a topological degree formula for the Euler characteristic of this fiber. This generalizes a result of Fukui.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03310340
Contributor : Nicolas Dutertre Connect in order to contact the contributor
Submitted on : Friday, February 25, 2022 - 2:25:27 PM
Last modification on : Wednesday, April 6, 2022 - 1:39:47 PM
Long-term archiving on: : Thursday, May 26, 2022 - 7:35:40 PM

File

OneParamDeforNonIsolated8.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Nicolas Dutertre, Juan Antonio Moya Pérez. TOPOLOGY OF 1-PARAMETER DEFORMATIONS OF NON-ISOLATED REAL SINGULARITIES. Glasgow Mathematical Journal, Cambridge University Press (CUP), 2022, 64 (2), pp.484-498. ⟨10.1017/S0017089521000239⟩. ⟨hal-03310340⟩

Share

Metrics

Record views

20

Files downloads

7