Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Nonlinear mirror image method for nonlinear Schrödinger equation: Absorption/emission of one soliton by a boundary

Abstract : We perform the analysis of the focusing nonlinear Schrödinger equation on the half-line with time-dependent boundary conditions along the lines of the nonlinear method of images with the help of Bäcklund transformations. The difficulty arising from having such time-dependent boundary conditions at $x=0$ is overcome by changing the viewpoint of the method and fixing the Bäcklund transformation at infinity as well as relating its value at $x=0$ to a time-dependent reflection matrix. The interplay between the various aspects of integrable boundary conditions is reviewed in detail to brush a picture of the area. We find two possible classes of solutions. One is very similar to the case of Robin boundary conditions whereby solitons are reflected at the boundary, as a result of an effective interaction with their images on the other half-line. The new regime of solutions supports the existence of one soliton that is not reflected at the boundary but can be either absorbed or emitted by it. We demonstrate that this is a unique feature of time-dependent integrable boundary conditions.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03287289
Contributor : Inspire Hep <>
Submitted on : Thursday, July 15, 2021 - 3:17:05 PM
Last modification on : Friday, July 16, 2021 - 3:26:17 AM

Links full text

Identifiers

Collections

Citation

Vincent Caudrelier, Nicolas Crampe, Carlos Mbala Dibaya. Nonlinear mirror image method for nonlinear Schrödinger equation: Absorption/emission of one soliton by a boundary. 2021. ⟨hal-03287289⟩

Share

Metrics

Record views

8