Inferring bubble volume fraction in a glass melt through in situ impedance spectroscopy measurements - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Applied Glass Science Année : 2021

Inferring bubble volume fraction in a glass melt through in situ impedance spectroscopy measurements

Résumé

We evaluated the feasibility of inferring the bubble volume fraction (b) in a melt by employing in situ impedance spectroscopy measurements. This idea stems from the effective medium theory, in which the ionic conductivity of a biphasic material can be determined from the isolated contribution of each constituent phase and their respective volumetric content. Therefore, we investigated the overall electrical conductivity of a borosilicate melt doped with cerium-IV oxide at a constant temperature (1273 K), in which O2 gas production takes place. To validate the use of this proposed technique, post-mortem bubble volume fraction analyses on samples synthesized following the same procedure were conducted by apparent density and impedance spectroscopy measurements at low temperatures (below Tg). A comparison of these post-mortem and in situ techniques is presented. Despite some discrepancies observed between the bubble volume fractions estimated by these different methods, the main results demonstrate the technical viability of this in situ approach. In situ impedance spectroscopy presents advantages in terms of presynthesis duration, sample preparation, and the information is obtained at high temperatures, eliminating the possible influence of the cooling stage.
Fichier principal
Vignette du fichier
Pereiraetal2021.pdf (1.15 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03229456 , version 1 (19-05-2021)

Identifiants

Citer

Luiz Pereira, Muriel Neyret, Annabelle Laplace, Franck Pigeonneau, Rafael Nuernberg. Inferring bubble volume fraction in a glass melt through in situ impedance spectroscopy measurements. International Journal of Applied Glass Science, inPress, ⟨10.1111/ijag.15895⟩. ⟨hal-03229456⟩
41 Consultations
101 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More