Methodology for developing a high precision ultrasound flow meter and fluid velocity profile reconstruction - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Année : 2008

Methodology for developing a high precision ultrasound flow meter and fluid velocity profile reconstruction

Résumé

This article reports the methodology used to develop a high-precision ultrasound transit time flow meter dedicated to liquid hydrocarbons. This kind of flow meter is designed for custody transfer applications requiring accuracy better than 0.15% of reading. We focus here on certain specific points to achieve this accuracy. The transit time method needs to estimate accurately the time delay between signals received by a pair of transducers. In this study, we review different ways of estimating this time delay. We also propose a specific configuration of the flow meter paths. In particular, this configuration compensates for the swirl phenomenon, which has a significant impact on the accuracy of the flow meter. We also propose a theoretical parametric profile to reconstruct the fluid velocity profile in order to perform in situ diagnosis of the flow. The parameters of the model are estimated from the measurements of the flow meter. Simulations and experimental results showed that this method provides characterization of the flow in disturbed and undisturbed flow conditions.
Fichier non déposé

Dates et versions

hal-03149777 , version 1 (23-02-2021)

Identifiants

Citer

Emmanuelle Mandard, Denis Kouamé, Rodolphe Battault, Jean-Pierre Remenieras, Frédéric Patat. Methodology for developing a high precision ultrasound flow meter and fluid velocity profile reconstruction. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2008, 55 (1), pp.161--172. ⟨10.1109/TUFFC.2008.625⟩. ⟨hal-03149777⟩
27 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More