Skip to Main content Skip to Navigation
Journal articles

Deep Learning–based Automated Segmentation of the Left Ventricular Trabeculations and Myocardium on Cardiac MR Images: A Feasibility Study

Axel Bartoli Joris Fournel Zakarya Bentatou Gilbert Habib Alain Lalande 1, 2 Monique Bernard Loic Boussel François Pontana Jean-Nicolas Dacher Badih Ghattas Alexis Jacquier
1 Equipe IFTIM [ImViA - EA7535]
CHU Dijon - Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand, UNICANCER/CRLCC-CGFL - Centre Régional de Lutte contre le cancer Georges-François Leclerc [Dijon], ImViA - Imagerie et Vision Artificielle [Dijon]
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03119205
Contributor : Alain Lalande <>
Submitted on : Saturday, January 23, 2021 - 8:33:41 AM
Last modification on : Tuesday, February 9, 2021 - 2:42:14 PM

Identifiers

Collections

Citation

Axel Bartoli, Joris Fournel, Zakarya Bentatou, Gilbert Habib, Alain Lalande, et al.. Deep Learning–based Automated Segmentation of the Left Ventricular Trabeculations and Myocardium on Cardiac MR Images: A Feasibility Study. Radiology: Artificial Intelligence, RSNA, 2020, pp.e200021. ⟨10.1148/ryai.2020200021⟩. ⟨hal-03119205⟩

Share

Metrics

Record views

40