Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2020

Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation

Résumé

Bioflm colonisation of surfaces is of critical importance in various areas ranging from indwelling medical devices to industrial setups. Of particular importance is the reduced susceptibility of bacteria embedded in a bioflm to existing antimicrobial agents. In this paper, we demonstrate that remotely actuated magnetic cantilevers grafted on a substrate act efciently in preventing bacterial bioflm formation. When exposed to an alternating magnetic feld, the fexible magnetic cantilevers vertically defect from their initial position periodically, with an extremely low frequency (0.16 Hz). The cantilevers’ beating prevents the initial stage of bacterial adhesion to the substrate surface and the subsequent bioflm growth. Our experimental data on E. coli liquid cultures demonstrate up to a 70% reduction in bioflm formation. A theoretical model has been developed to predict the amplitude of the cantilevers vertical defection. Our results demonstrate proof-of-concept for a device that can magneto-mechanically prevent the frst stage in bacterial bioflm formation, acting as on-demand fouling release active surfaces.

Domaines

Biotechnologies

Dates et versions

hal-03115115 , version 1 (19-01-2021)

Identifiants

Citer

S. Leulmi Pichot, Hélène Joisten, A. Grant, B. Dieny, R. Cowburn. Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation. Scientific Reports, 2020, Scientific Reports, 10 (15470), 12pp. ⟨10.1038/s41598-020-72406-8⟩. ⟨hal-03115115⟩
27 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More