Skip to Main content Skip to Navigation
Journal articles

Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems

Abstract : We derive novel error estimates for Hybrid High-Order (HHO) discretizations of Leray-Lions problems set in $W^{1, p}$ with $p\in(1, 2]$. Specifically, we prove that, depending on the degeneracy of the problem, the convergence rate may vary between $(k + 1)(p − 1)$ and $(k + 1)$, with $k$ denoting the degree of the HHO approximation. These regime-dependent error estimates are illustrated by a complete panel of numerical experiments.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03049154
Contributor : Daniele Antonio Di Pietro Connect in order to contact the contributor
Submitted on : Friday, June 4, 2021 - 9:03:19 PM
Last modification on : Friday, October 22, 2021 - 2:54:05 PM

File

hholli.pdf
Files produced by the author(s)

Identifiers

Citation

Daniele Antonio Di Pietro, Jérôme Droniou, André Harnist. Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems. Calcolo, Springer Verlag, 2021, 58 (19), ⟨10.1007/s10092-021-00410-z⟩. ⟨hal-03049154v2⟩

Share

Metrics

Les métriques sont temporairement indisponibles