Skip to Main content Skip to Navigation
Journal articles

Insurance valuation: A two-step generalised regression approach

Abstract : Current approaches to fair valuation in insurance often follow a two-step approach, combining quadratic hedging with application of a risk measure on the residual liability, to obtain a cost-of-capital margin. In such approaches, the preferences represented by the regulatory risk measure are not reflected in the hedging process. We address this issue by an alternative two-step hedging procedure, based on generalised regression arguments, which leads to portfolios that are neutral with respect to a risk measure, such as Value-at-Risk or the expectile. First, a portfolio of traded assets aimed at replicating the liability is determined by local quadratic hedging. Second, the residual liability is hedged using an alternative objective function. The risk margin is then defined as the cost of the capital required to hedge the residual liability. In the case quantile regression is used in the second step, yearly solvency constraints are naturally satisfied; furthermore, the portfolio is a risk minimiser among all hedging portfolios that satisfy such constraints. We present a neural network algorithm for the valuation and hedging of insurance liabilities based on a backward iterations scheme. The algorithm is fairly general and easily applicable, as it only requires simulated paths of risk drivers.
Document type :
Journal articles
Complete list of metadata
Contributor : Karim Barigou Connect in order to contact the contributor
Submitted on : Monday, November 1, 2021 - 7:06:57 PM
Last modification on : Friday, January 21, 2022 - 3:33:23 AM


Files produced by the author(s)




Karim Barigou, Valeria Bignozzi, Andreas Tsanakas. Insurance valuation: A two-step generalised regression approach. ASTIN Bulletin, Cambridge University Press (CUP), 2021, pp 1-35. ⟨10.1017/asb.2021.31⟩. ⟨hal-03043244v2⟩



Record views


Files downloads