Skip to Main content Skip to Navigation
Journal articles

Cancer and Alzheimer’s disease: intracellular pH scales the metabolic disorders

Abstract : Alzheimer's disease (AD) and cancer have much in common than previously recognized. These pathologies share common risk factors (inflammation and aging), with similar epidemiological and biochemical features such as impaired mitochondria. Metabolic reprogramming occurs during aging and inflammation. We assume that inflammation is directly responsible of the Warburg effect in cancer cells, with a decreased oxidative phosphorylation and a compensatory highthroughput glycolysis (HTG). Similarly, the Warburg effect in cancer is thought to support an alkaline intracellular pH (pHi), a key component of unrelenting cell growth. In the brain, inflammation results in increased secretion of lactate by astrocytes. The increased uptake of lactic acid by neurons results in the inverse Warburg effect, such as seen in AD. The neuronal activity is dampened by a fall of pHi. Pronounced cytosol acidification results in decreased mitochondrial energy yield as well as apoptotic cell death. The link between AD and cancer is reinforced by the fact that treatment aiming at restoring the mitochondrial activity have been experimentally shown to be effective in both diseases. Low carb diet, lipoic acid, and/or methylene blue could then appear promising in both sets of these clinically diverse diseases.
Document type :
Journal articles
Complete list of metadata
Contributor : Sabine Peres Connect in order to contact the contributor
Submitted on : Thursday, October 15, 2020 - 2:29:44 PM
Last modification on : Sunday, June 26, 2022 - 2:54:49 AM



Laurent Schwartz, Sabine S. Peres, Mario Jolicoeur, Jorgelindo da Veiga Moreira. Cancer and Alzheimer’s disease: intracellular pH scales the metabolic disorders. Biogerontology, Springer Verlag, 2020, 21 (6), pp.683-694. ⟨10.1007/s10522-020-09888-6⟩. ⟨hal-02968151⟩



Record views