Structural and hydrogenation study on the ball milled TiH2eMgeNi - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Hydrogen Energy Année : 2015

Structural and hydrogenation study on the ball milled TiH2eMgeNi

Résumé

With the aim of further understanding for TieNieMg alloys and their hydrogenation behavior, powders of TiH2, Mg and Ni with the molar ratio of 3:1:2 have been mechanically milled for 10 h, 20 h, 30 h, 40 h according to the stoichiometry (TiH2)1.5Mg0.5Ni. Microstructures of the milled sample were analyzed and their hydrogenation properties as negative electrodes for Ni-MH batteries were studied. Phase change with milling time revealed the fast formation of the Ti-Mg-H FCC phase. The alloying priority among Ti, Mg and Ni was demonstrated by comparing phase compositions in different milling time. Hydrogen capacities evaluated by both solidegas reaction and electrochemical cycling under galvanostatic conditions show that overall capacities increase with milling time. Except for the sample milled 10 h, which hardly delivers any reversible hydrogen capacity, all samples exhibit excellent cycling stability after capacity drop in the first few cycles. The best discharge capacity 100 mAh/g is observed for the sample milled 40 h. The PCI (Pressure-Composition-Isotherms) and GITT (Galvanostatic Intermittent Titration Technique) curves indicate that all samples absorb hydrogen in solid solution. The measured capacities are concluded to be contributed by the TieMgeH phase and the TiNi phase, while only the latter can provide reversible capacity.
Fichier non déposé

Dates et versions

hal-02963409 , version 1 (10-10-2020)

Identifiants

Citer

Xianda Li, Omar El Kedim, Fermin Cuevas, Rémi Chassagnon. Structural and hydrogenation study on the ball milled TiH2eMgeNi. International Journal of Hydrogen Energy, 2015, 40, pp.4212 - 4218. ⟨10.1016/j.ijhydene.2015.01.118⟩. ⟨hal-02963409⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More