Cloudiness Information Services for Solar Energy Management in West Africa - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmosphere Année : 2020

Cloudiness Information Services for Solar Energy Management in West Africa

Résumé

In West Africa (WA), interest in solar energy development has risen in recent years with many planned and ongoing projects currently in the region. However, a major drawback to this development in the region is the intense cloud cover that reduces the incoming solar radiation when present and causes fluctuations in solar power production. Therefore, understanding the occurrence of clouds and their link to the surface solar radiation in the region is important for making plans to manage future solar energy production. In this study, we use the state-of-the-art European Centre for Medium-range Weather Forecasts ReAnalysis (ERA5) dataset to examine the occurrence and persistence of cloudy and clear-sky conditions in the region. Then, we investigate the effects of cloud cover on the quantity and variability of the incoming solar radiation. The cloud shortwave radiation attenuation (CRA ↓ SW) is used to quantify the amount of incoming solar radiation that is lost due to clouds. The results showed that the attenuation of incoming solar radiation is stronger in all months over the southern part of WA near the Guinea Coast. Across the whole region, the maximum attenuation occurs in August, with a mean CRA ↓ SW of about 55% over southern WA and between 20% and 35% in the Sahelian region. Southern WA is characterized by a higher occurrence of persistent cloudy conditions, while the Sahel region and northern WA are associated with frequent clear-sky conditions. Nonetheless, continuous periods with extremely low surface solar radiation were found to be few over the whole region. The analysis also showed that the surface solar radiation received from November to April only varies marginally from one year to the other. However, there is a higher uncertainty during the core of the monsoon season (June to October) with regard to the quantity of incoming solar radiation. The results obtained show the need for robust management plans to ensure the long-term success of solar energy projects in the region.
Fichier principal
Vignette du fichier
atmosphere-11-00857-v2.pdf (5.89 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02916863 , version 1 (19-09-2020)

Licence

Paternité - Pas de modifications

Identifiants

Citer

Derrick Kwadwo Danso, Sandrine Anquetin, Arona Diedhiou, Rabani Adamou. Cloudiness Information Services for Solar Energy Management in West Africa. Atmosphere, 2020, 11 (8), pp.857. ⟨10.3390/atmos11080857⟩. ⟨hal-02916863⟩
35 Consultations
23 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More