Skip to Main content Skip to Navigation
Journal articles

Climate dependent heating efficiency in the common lizard

Abstract : Regulation of body temperature is crucial for optimizing physiological performance in ectotherms but imposes constraints in time and energy. Time and energy spent thermoregulating can be reduced through behavioral (e.g., basking adjustments) or biophysical (e.g., heating rate physiology) means. In a heterogeneous environment, we expect thermoregulation costs to vary according to local, climatic conditions and therefore to drive the evolution of both behavioral and biophysical thermoregulation. To date, there are limited data showing that thermal physiological adjustments have a direct relationship to climatic conditions. In this study, we explored the effect of environmental conditions on heating rates in the common lizard (Zootoca vivipara ). We sampled lizards from 10 populations in the Massif Central Mountain range of France and measured whether differences in heating rates of individuals correlated with phenotypic traits (i.e., body condition and dorsal darkness) or abiotic factors (temperature and rainfall). Our results show that heat gain is faster for lizards with a higher body condition, but also for individuals from habitats with higher amount of precipitation. Altogether, they demonstrate that environmentally induced constraints can shape biophysical aspects of thermoregulation.
Document type :
Journal articles
Complete list of metadata
Contributor : Martine Lacalle <>
Submitted on : Monday, July 27, 2020 - 9:33:11 AM
Last modification on : Monday, April 5, 2021 - 2:26:18 PM

Links full text



Alexis Rutschmann, David Rozen‐rechels, Andréaz Dupoué, Pauline Blaimont, Pierre de Villemereuil, et al.. Climate dependent heating efficiency in the common lizard. Ecology and Evolution, Wiley Open Access, 2020, 10 (15), pp.8007-8017. ⟨10.1002/ece3.6241⟩. ⟨hal-02907045⟩



Record views