Skip to Main content Skip to Navigation
Journal articles

Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase

E. Drouelle V. Gauthier-Brunet 1 J. Cormier 2 P. Villechaise 2 P. Sallot 3 F. Naimi 4 F. Bernard 4 S. Dubois 5
2 ENDO - ENDOmmagement et durabilité ENDO
Département Physique et Mécanique des Matériaux - Département Physique et Mécanique des Matériaux
5 PPNa - Physique et Propriétés des Nanostructures PPNa
Département Physique et Mécanique des Matériaux - Département Physique et Mécanique des Matériaux
Abstract : Spark Plasma Sintering and Hot Isostatic Pressing were used to synthesize coarse-grained and fine-grained Ti3AlC2 specimens. Moreover, Spark Plasma Sintering processing parameters were modified in order to vary the TiC, Al2O3 and TixAly impurity and the porosity contents in the fine-grained samples. The influence of the Ti3AlC2 microstructure on the oxidation resistance was assesed. It is demonstrated that the grain size can drastically modify the oxidation resistance. The higher density of grain boundaries, in fine-grained specimens, increases the number of Al diffusion paths and leads to the formation of a protective alumina scale. In coarse-grained sample, Al diffusion is the rate limiting step of the α−Al2O3 formation and TiO2 is formed simultaneously to alumina. TiC impurities and porosity are demonstrated to be detrimental to the oxidation resistance in the 800 °C–1000 °C temperature range by favouring TiO2 formation. Finally, it is also shown that, for fine-grained specimens, the oxide scale grows very slowly for oxidation times in the range 20–40 days.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02481033
Contributor : Cécile Boye Connect in order to contact the contributor
Submitted on : Monday, February 17, 2020 - 11:06:37 AM
Last modification on : Wednesday, November 3, 2021 - 5:50:00 AM

Identifiers

Citation

E. Drouelle, V. Gauthier-Brunet, J. Cormier, P. Villechaise, P. Sallot, et al.. Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase. Journal of Alloys and Compounds, Elsevier, 2020, 826, pp.154062. ⟨10.1016/j.jallcom.2020.154062⟩. ⟨hal-02481033⟩

Share

Metrics

Record views

137