Latest geodetic changes of Austre Lovénbreen and Pedersenbreen, Svalbard - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Remote Sensing Année : 2019

Latest geodetic changes of Austre Lovénbreen and Pedersenbreen, Svalbard

Xi Ding
  • Fonction : Auteur
  • PersonId : 1064402
Zemin Wang
  • Fonction : Auteur
  • PersonId : 1064403
Xi Zhao
  • Fonction : Auteur
  • PersonId : 764426
  • IdRef : 152921427

Résumé

Geodetic mass changes in the Svalbard glaciers Austre Lovénbreen and Pedersenbreen were studied via high-precision real-time kinematic (RTK)-global positioning system (GPS) measurements from 2013 to 2015. To evaluate the elevation changes of the two Svalbard glaciers, more than 10,000 GPS records for each glacier surface were collected every year from 2013 to 2015. The results of several widely used interpolation methods (i.e., inverse distance weighting (IDW), ordinary kriging (OK), universal kriging (UK), natural neighbor (NN), spline interpolation, and Topo to Raster (TTR) interpolation) were compared. Considering the smoothness and accuracy of the glacier surface, NN interpolation was selected as the most suitable interpolation method to generate a surface digital elevation model (DEM). In addition, we compared two procedures for calculating elevation changes: using DEMs generated from the direct interpolation of the RTK-GPS points and using the elevation bias of crossover points from the RTK-GPS tracks in different years. Then, the geodetic mass balances were calculated by converting the elevation changes to their water equivalents. Comparing the geodetic mass balances calculated with and without considering snow depth revealed that ignoring the effect of snow depth, which differs greatly over a short time interval, might lead to bias in mass balance investigation. In summary, there was a positive correlation between the geodetic mass balance and the corresponding elevation. The mass loss increased with decreasing elevation, and the mean annual gradients of the geodetic mass balance along the elevation of Austre Lovénbreen and Pedersenbreen in 2013-2015 were approximately 2.60% and 2.35% , respectively. The gradients at the glacier snouts were three times larger than those over the whole glaciers. Additionally, some mass gain occurred in certain high-elevation regions. Compared with a 2019 DEM generated from unmanned aerial vehicle measurement, the glacier snout areas presented an accelerating thinning situation in 2015-2019.
Fichier principal
Vignette du fichier
Tolle_2019 ai et al RS-1.pdf (6.99 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02470109 , version 1 (07-02-2020)

Identifiants

Citer

Songtao Ai, Xi Ding, Florian Tolle, Zemin Wang, Xi Zhao. Latest geodetic changes of Austre Lovénbreen and Pedersenbreen, Svalbard. Remote Sensing, 2019, 11 (24), pp.2890. ⟨10.3390/rs11242890⟩. ⟨hal-02470109⟩
77 Consultations
35 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More