Numerical simulation of rigid particles in Stokes flow: lubrication correction for any (regular) shape of particles - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2020

Numerical simulation of rigid particles in Stokes flow: lubrication correction for any (regular) shape of particles

Résumé

We address the problem of numerical simulation of suspensions of rigid particles in a Stokes flow. We focus on the inclusion of the singular short range interaction effects (lubrication effects) in the simulations when the particles come close one to another. The problem is solved without introducing new hypothesis nor model. As in [Lefebvre-Lepot, Merlet, Nguyen, JFM, 2015], the key idea is to decompose the velocity and pressure flows in a sum of a singular and a regular part. In this article, the singular part is computed using an explicit asymptotic expansion of the solution when the distance goes to zero. This expansion is similar to the asymptotic expansion proposed in [Hillairet, Kelai, Asymptotic Analysis, 2015] but is more appropriate for numerical simulations of suspensions. It can be computed for any shape of particles. Using [Hillairet, Kelai, Asymptotic Analysis, 2015] as an intermediate result, we prove that the remaining part is regular in the sense that it is bounded independently of the distance. As a consequence, only a small number of degrees of freedom are necessary to obtain accurate results. The method is tested in dimension 2 for clusters of two or three aligned particles with general rigid velocities. We show that, as expected, the convergence is independent on the distance.
Fichier principal
Vignette du fichier
Hal_LefebvreNabet.pdf (2.76 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02433849 , version 1 (09-01-2020)
hal-02433849 , version 2 (28-06-2021)

Identifiants

  • HAL Id : hal-02433849 , version 1

Citer

Aline Lefebvre-Lepot, Flore Nabet. Numerical simulation of rigid particles in Stokes flow: lubrication correction for any (regular) shape of particles. 2020. ⟨hal-02433849v1⟩
271 Consultations
190 Téléchargements

Partager

Gmail Facebook X LinkedIn More